Chapter 7 Review

Period:

Tell whether the sequence is arithmetic, geometric, or neither. Explain.

1. 5, 9, 13, 17, ... 2. 3, 6, 12, 24, ... 3.
$$40$$
, 10 , $\frac{5}{2}$, $\frac{5}{8}$, ... 4. 4, 7, 12, 19, ...

Write the first six terms of the sequence.

5.
$$a_n = 6 - n^2$$

6.
$$a_n = 7n^3$$

7.
$$a_1 = 4$$

 $a_n = 5a_{n-1}$

7.
$$a_1 = 4$$

 $a_n = 5a_{n-1}$
8. $a_1 = -1$
 $a_n = a_{n-1} + 6$

Write the next term of the sequence, and then write a rule for the nth term.

11.
$$\frac{6}{5}$$
, $\frac{7}{10}$, $\frac{8}{15}$, $\frac{9}{20}$, .

9. 5, 11, 17, 23, ... 10. 3, 15, 75, 375, ... 11.
$$\frac{6}{5}$$
, $\frac{7}{10}$, $\frac{8}{15}$, $\frac{9}{20}$, ... 12. 1.6, 3.2, 4.8, 6.4, ...

Find the sum of the series.

13.
$$\sum_{i=1}^{48} i$$

14.
$$\sum_{n=1}^{28} n^n$$

15.
$$\sum_{i=1}^{10} (4i - 9)^{i}$$

14.
$$\sum_{n=1}^{28} n^2$$
 15. $\sum_{i=1}^{10} (4i - 9)$ 16. $\sum_{i=1}^{19} (2i + 5)$

17.
$$\sum_{i=1}^{5} 9(2)^{i-1}$$

18.
$$\sum_{i=1}^{6} 12 \left(\frac{1}{3}\right)^{i-1}$$

19.
$$\sum_{i=1}^{\infty} 8\left(\frac{3}{4}\right)^{i-1}$$

17.
$$\sum_{i=1}^{5} 9(2)^{i-1}$$
 18. $\sum_{i=1}^{6} 12\left(\frac{1}{3}\right)^{i-1}$ 19. $\sum_{i=1}^{\infty} 8\left(\frac{3}{4}\right)^{i-1}$ 20. $\sum_{i=1}^{\infty} 20\left(\frac{3}{10}\right)^{i-1}$

Write the repeating decimal as a fraction in lowest terms.

Write a recursive rule for the sequence.

32. QUILTS Use the pattern of checkerboard quilts shown.

 $n = 1, a_n = 1$

 $n = 2, a_n = 2$

 $n = 3, a_n = 5$

 $n = 4, a_n = 8$

- a. What does n represent for each quilt? What does a_n represent?
- b. Make a table that shows n and a_n for n = 1, 2, 3, 4, 5, 6, 7, and 8.
- c. Use the rule $a_n = \frac{n^2}{2} + \frac{1}{4}[1 (-1)^n]$ to find a_n for n = 1, 2, 3, 4, 5, 6, 7, ...and 8. Compare these values with the results in your table. What can you conclude about the sequence defined by this rule?
- 33. AUDITIONS Several rounds of auditions are being held to cast the three main parts in a play. There are 3072 actors at the first round of auditions. In each successive round of auditions, one fourth of the actors from the previous round remain. Find a rule for the number a_n of actors in the nth round of auditions. For what values of n does your rule make sense?