Practice: Section 7.3

Tell whether the sequence is geometric. Explain why or why not.

5. 25, 5, 1,
$$\frac{1}{5}$$
, $\frac{1}{25}$, ...

4. 16, 8, 2, 0.5, 0.125, . . . **5.** 25, 5, 1,
$$\frac{1}{5}$$
, $\frac{1}{25}$, . . . **6.** $\frac{3}{4}$, $\frac{1}{4}$, $\frac{1}{12}$, $\frac{1}{36}$, $\frac{1}{108}$, . . .

Write a rule for the nth term of the geometric sequence. Then find $a_{\rm s}$.

Write a rule for the nth term of the geometric sequence. Then graph the first five terms of the sequence.

10.
$$r = 2, a_1 = 1$$

11.
$$r = 3, a_2 = 15$$

12.
$$r = \frac{2}{3}, a_2 = 54$$

Write a rule for the nth term of the geometric sequence that has the two given terms.

13.
$$a_1 = 4, a_2 = 12$$

14.
$$a_2 = 2$$
, $a_5 = 16$

14.
$$a_2 = 2, a_5 = 16$$
 15. $a_3 = -32, a_6 = -2048$

16.
$$a_3 = 1, a_6 = \frac{1}{27}$$

17.
$$a_2 = 10, a_5 = 80$$

17.
$$a_2 = 10, a_5 = 80$$
 18. $a_2 = 20, a_4 = \frac{5}{4}$

Find the sum of the geometric series.

19.
$$\sum_{i=1}^{6} 2(2)^{i-1}$$

20.
$$\sum_{i=1}^{5} 1(3)^{i-1}$$

20.
$$\sum_{i=1}^{5} 1(3)^{i-1}$$
 21. $\sum_{i=1}^{8} 0.5(2)^{i-1}$

22.
$$\sum_{i=1}^{5} \frac{1}{1000} (10)^{i-1}$$
 23. $\sum_{i=1}^{5} 400 \left(\frac{1}{2}\right)^{i-1}$

23.
$$\sum_{i=1}^{5} 400 \left(\frac{1}{2}\right)^{i-1}$$

24.
$$\sum_{i=1}^{6} 1000 \left(\frac{4}{5}\right)^{i-1}$$

- 25. Production A company plans to increase production of a product by 10% each year over the next 12 years. The company will produce 70,000 units next year (year 1).
 - **a.** Write a rule giving the number of units produced by the company in year n.
 - b. Find the numbers of units produced in years 4, 8, and 12.
 - c. Find the total number of units produced over the next 12 years.