Graphing Absolute Value and Quadratic Functions and Describing Transformations

Identify the function family to which f belongs. Compare the graph of f to the graph of its parent function.

1.

 $f(x) = \frac{2}{5}|x-3|$

2.

Graph the function and its parent function. Then describe the transformation.

3.
$$h(x) = |x + 5|$$

4.
$$n(x) = -2x^2$$

5.
$$m(x) = |3x|$$

6.
$$g(x) = \frac{1}{2}x^2 - 6$$

7.
$$l(x) = |x - 2| + 3$$

8.
$$n(x) = 3x^2 - 4$$

9.
$$p(x) = (-x + 4)^2$$

10.
$$z(x) = \frac{1}{2}|x - 1| - 3$$

9.
$$k(x) = |-x + 2| + 1$$

Write a function g whose graph represents the indicated transformation of the parent function f given.

10.
$$f(x) = |x|$$
; reflection in the x-axis

11.
$$f(x) = x^2$$
; reflection in the y-axis

12.
$$f(x) = x^2$$
; vertical stretch by a factor of 2

13.
$$f(x) = |x|$$
; horizontal stretch by a factor of 3

14.
$$f(x) = |x|$$
; vertical shrink by a factor of $\frac{1}{3}$

14.
$$f(x) = |x|$$
; vertical shrink by a factor of $\frac{1}{3}$ **15.** $f(x) = x^2$; horizontal shrink by a factor of $\frac{1}{4}$

Write a function g whose graph represents the indicated transformation of the function f given.

16.
$$f(x) = -5x^2 + 2$$
; reflection in the x-axis **17.** $f(x) = |6x| - 2$; reflection in the y-axis

17.
$$f(x) = |6x| - 2$$
; reflection in the y-axis

18.
$$f(x) = x^2 + 2$$
; vertical stretch by a factor of 5 **19.** $f(x) = |x + 3|$; horizontal stretch by a factor of 4

19.
$$f(x) = |x + 3|$$
; horizontal stretch by a factor of 4

20.
$$f(x) = 2x^2 + 6$$
; vertical shrink by a factor of $\frac{1}{2}$ **21.** $f(x) = |2x| + 4$; horizontal shrink by a factor of $\frac{1}{2}$

21.
$$f(x) = |2x| + 4$$
; horizontal shrink by a factor of $\frac{1}{2}$