In Exercises 1-6, use the properties of rational exponents to simplify the expression.
4. $\frac{10}{10^{1 / 4}}$
5. $\left(\frac{6^{5}}{9^{5}}\right)^{-1 / 5}$
6. $\left(7^{-3 / 4} \cdot 7^{1 / 4}\right)^{-1}$

In Exercises 13-18, write the expression in simplest form.
13. $\sqrt[4]{208}$
14. $\frac{\sqrt[3]{9}}{\sqrt[3]{4}}$
15. $\sqrt{\frac{5}{27}}$
16. $\frac{1}{2+\sqrt{3}}$
17. $\frac{6}{4-\sqrt{5}}$
18. $\frac{8}{\sqrt{2}+\sqrt{5}}$

In Exercises 7-12, describe the transformation of f represented by g. Then graph each function.
7. $f(x)=\sqrt{x} ; g(x)=4 \sqrt{x-2}$
8. $f(x)=\sqrt[3]{x} ; g(x)=\sqrt[3]{x-5}-1$

In Exercises 8-13, solve the equation. Check your solution(s).
8. $x-8=\sqrt{4 x}$
9. $\sqrt{2 x-14}=x-7$

In Exercises 3-5, find $(f g)(x)$ and $\left(\frac{f}{g}\right)(x)$ and state the domain of each.
Then evaluate $f g$ and $\frac{f}{g}$ for the given value of x.
4. $f(x)=3 x^{2} ; g(x)=5 x^{1 / 4} ; x=16$
5. $f(x)=10 x^{5 / 6} ; g(x)=2 x^{1 / 3} ; x=64$

In Exercises 4-6, find the inverse of the function. Then graph the function and its inverse.
4. $f(x)=4 x$
5. $f(x)=4 x-1$
6. $f(x)=\frac{1}{2} x-5$

In Exercises 14-16, solve the equation. Check your solution(s).
14. $2 x^{2 / 3}=18$
15. $x^{3 / 4}+10=0$
16. $(x+12)^{1 / 2}=x$

In Exercises 57-64, write the expression in simplest
form. Assume all variables are positive. (See Example 7.)
57. $\sqrt{81 a^{7} b^{12} c^{9}}$
58. $\sqrt[3]{125 r^{4} s^{9} t^{7}}$

