Notetaking with Vocabulary (continued)

Extra Practice

- 1. In 2005, there were 100 rabbits in Polygon Park. The population increased by 11% each year.
 - **a.** Write an exponential growth function that represents the population t years after 2005.
 - b. What will the population be in 2025? Round your answer to the nearest whole number.

In Exercises 2-5, determine whether the table represents an exponential growth function, an exponential decay function, or neither. Explain.

2.

x	У
0	20
1	30
2	45
3	67.5

x	у
-1	160
0	40
1	10
2	2.5

X	У
1	32
2	22
3	12
4	2

5.

X	у
-1	4
0	10
1	25
2	62.5

In Exercises 6-8, determine whether each function represents exponential growth or exponential decay. Identify the percent rate of change.

6.
$$y = 4(0.95)$$

7.
$$v = 500(1.08)^t$$

6.
$$y = 4(0.95)^t$$
 7. $y = 500(1.08)^t$ **8.** $w(t) = \left(\frac{3}{4}\right)^t$

In Exercises 9 and 10, write a function that represents the balance after t years.

- 9. \$3000 deposit that earns 6% annual interest compounded quarterly.
- 10. \$5000 deposit that earns 7.2% annual interest compounded monthly.

Practice A

In Exercises 1-3, identify the initial amount a and the rate of growth r (as a percent) of the exponential function. Evaluate the function when t = 5. Round your answer to the nearest tenth.

1.
$$y = 50(1 + 0.25)^t$$
 2. $y = 172(1 + 0.3)^t$ **3.** $y = 1000(1.75)^t$

2.
$$y = 172(1 + 0.3)^{6}$$

3.
$$y = 1000(1.75)^{6}$$

In Exercises 4 and 5, write a function that represents the situation.

- 4. Profits of \$100,000 increase by 15% each year.
- 5. College enrollment of 41,000 increases by 7% every year.
- 6. The number of food trucks in a city has been increasing by 50% annually. There were two food trucks in the year 2010.
 - a. Write an exponential growth function that represents the number of food trucks t years after 2010.
 - b. How many food trucks will there be in the year 2030? Does this sound reasonable? Explain.

In Exercises 7–9, identify the initial amount a and the rate of decay r (as a percent) of the exponential function. Evaluate the function when t = 3. Round your answer to the nearest tenth.

7.
$$y = 12(1 - 0.35)^t$$
 8. $y = 360(1 - 0.9)^t$ 9. $h(t) = 550(0.4)^t$

8.
$$y = 360(1 - 0.9)^t$$

9.
$$h(t) = 550(0.4)^t$$

In Exercises 10 and 11, write a function that represents the situation.

- 10. A school population of 1200 decreases by 6% each year.
- 11. A stock valued at \$49.50 decreases in value by 7% each year.

In Exercises 12 and 13, determine whether the table represents an exponential growth function, an exponential decay function, or neither. Explain.

In Exercises 14-16, determine whether the function represents exponential growth or exponential decay. Identify the percent rate of change.

14.
$$y = 3(0.4)$$

15.
$$y = 18(1.3)^{\circ}$$

14.
$$y = 3(0.4)^t$$
 15. $y = 18(1.3)^t$ **16.** $y = 41(1.07)^t$